## Thermodynamics I Chapter 1 Lecture no.3-Examples

Heat, Work, System \& State of the Working Fluid

Dr. Mahmood Shaker Jamel<br>Department Of Mechanical Engineering<br>Engineering College - University Of Basrah

## Example 1

There is an ideal gas in an insulated container. The volume of the container increases from 10 $\mathrm{m}^{3}$ to $20 \mathrm{~m}^{3}$ under a constant pressure of $20 \times 10^{5} \mathrm{~Pa}$. What was the work done on the gas?

## Solution:

We will use the formula


## Example2

As shown in the diagram below, firstly, the pressure of an ideal gas changes from $20 \times 10^{5} \mathrm{~Pa}$ to $40 \times 10^{5} \mathrm{~Pa}$ at the volume of $10 \mathrm{~m}^{3}$. Later, the pressure of it changes from $40 \times 10^{5} \mathrm{~Pa}$ to 20 $\times 10^{5}$ Pa while the volume increases from 10 to $20 \mathrm{~m}^{3}$. What is the work done by the gas?

## Solution:

You have a work is equal to


During process 1. volume did NOT change, there was no work done.
However, during process 2, you can solve this by taking the area under the curve.
We see from the graph that the area under the curve can be simplified to a rectangle and a triangle. If we take the areas of the two and add them together,

$$
\mathrm{A}_{\text {proc. } 2}=\mathrm{A}_{\text {triangle }}+\mathrm{A}_{\text {rectangle }} \text { then } \quad \mathrm{A}_{\text {proc. } 2}=\frac{1}{2} \Delta \mathrm{~V} \Delta \mathrm{P}+\mathrm{p}_{\mathrm{i}} \Delta \mathrm{~V}
$$


where $\Delta P=\left(P_{f}-P_{i}\right)=40-20=20 \times 10^{5}$ and
$\Delta V=\left(V_{f}-V_{i}\right)=20-10=10$ then $\quad A_{\text {proc. } 2}=\left\{\frac{1}{2}\left(10 \times 20 \times 10^{5}\right)\right\}+\left(20 \times 10^{5} \times 10\right)=300 \times 10^{5}$
$\mathrm{A}_{\text {proc. } 2}=\mathrm{W}_{\text {proc. } 2}=3 \times 10^{7}$
$\mathrm{W}_{\text {total }}=\mathrm{W}_{\text {proc. } 1}+\mathrm{W}_{\text {proc. } 2}$
$W_{\text {total }}=0+3 \times 10^{7}=3 \times 10^{7} \mathrm{~J}$

## Example

An ideal gas in an insulated container. If the work done on the gas is $4 \times 10^{6} \mathrm{~J}$, under a constant pressure of $2 \times 10^{5} \mathrm{~Pa}$ and the initial volume of the container is $30 \mathrm{~m}^{3}$, what is the final volume?

## Solution:

We will use the formula
We know that

## Example 4



An ideal gas in an insulated हैontainer. The volume of the container decreases from $25 \mathrm{~m}^{3}$ to 5 $\mathrm{m}^{3}$ under a constant pressure of $3 \times 10^{5} \mathrm{~Pa}$. What was the work done on the gas?

## Solution:

We will use the formula


We know that $\Delta V=-20 \mathrm{~m}^{3}$ and $\mathrm{P}=3 \times 10^{5} \mathrm{~Pa}$.
We plug these values in and get $\quad \mathbf{W}=\mathbf{P} \Delta \mathbf{V}=-6 \times 10^{6} \mathrm{~J}$

## Example5

Unit mass of a certain fluid is contained in a cylinder at an initial pressure of 20 bar. The fluid is allowed to expand reversibly behind a piston according to a law $\mathrm{pV}^{2}=$ Constant until the volume is doubled. The fluid is then cooled reversibly at constant pressure until the piston regain its original positions; heat is then supplied reversibly with piston firmly locked in position until the pressure rises to the original value of 20 bar. Calculate the network done by the fluid, for an initial volume of $0.05 \mathrm{~m}^{3}$

## Solution:

$$
\begin{aligned}
& p_{2}=p_{1}\left(\frac{V_{1}}{V_{2}}\right)^{2}=\frac{20}{2^{2}}=5 \text { bar } \\
& W_{12}=\int_{1}^{2} p \mathrm{~d} V
\end{aligned}
$$

i.e.

$$
W_{12}=\int_{V_{1}}^{V_{2}} \frac{c}{V^{2}} \mathrm{~d} V \text { where } c=p_{1} V_{1}^{2}=20 \times 0.05^{2} \text { bar m }
$$

therefore

$$
\begin{aligned}
W_{12} & =10^{5} \times 20 \times 0.0025\left[-\frac{1}{V}\right]_{0.05}^{0.1} \\
& =10^{5} \times 20 \times 0.0025\left(\frac{1}{0.05}-\frac{1}{0.1}\right)=50000 \mathrm{Nm} \\
W_{23} & =\text { area } 32 \mathrm{BA} 3=p_{2}\left(V_{2}-V_{3}\right)=10^{5} \times 5 \times(0.1-0.05) \\
& =25000 \mathrm{~N} \mathrm{~m}
\end{aligned}
$$



Work done from 3 to 1 is zero since the piston is locked in position. Therefore

$$
\text { Net work done }=W_{12}+W_{23}=\quad \text { (enclosed area 1231) }
$$

$$
=50000-25000=25000 \mathrm{Nm}
$$

Hence the net work done by the fluid is +25000 N m .

## HOME WORK

1.1 A certain fluid at 10 bar is contained in a cylinder behind a piston, the initial volume being $0.05 \mathrm{~m}^{3}$. Calculate the work done by the fluid when it expands reversibly,
(a) At constant pressure to a final volume of $0.2 \mathrm{~m}^{3}$.
(b) According to a linear law to a ninal volume of $0.2 \mathrm{~m}^{3}$ and a final pressure of 2 bar.
(c) According to a law $p y=$ constant to a final volume of $0.1 \mathrm{~m}^{3}$.
(d) According to a law $p V^{\prime 3}=$ constant to a final volume of $0.06 \mathrm{~m}^{3}$.
(e) According to a law $p=\left(A / V^{2}\right)-(B / V)$ to a final volume of $0.1 \mathrm{~m}^{3}$ and a final pressure of 1 bar. $A$ and $B$ are constants.
Sketch all processes on the $p-V$ diagram.
( $150000 ; 90000 ; 34700 ; 7640 ; 19200 \mathrm{Nm}$ )
1.21 kg of a fluid is compressed reversibly according to a law $p v=0.25$ where $p$ is in bar and $v$ is in $\mathrm{m}^{3} / \mathrm{kg}$. The final volume is $\frac{1}{4}$ of the initial volume. Calculate the work done on the fluid and sketch the process on a p-v diagram.
$(34660 \mathrm{Nm})$

- $1.30 .05 \mathrm{~m}^{3}$ of a gas at 6.9 bar expand reversibly in a cyinder behind a piston according to the law $p v^{1.3}=$ constant until the volume is $0.08 \mathrm{~m}^{3}$. Calculate the work done by the gas and sketch the process on a $p$ - $v$ diagram.
( 15300 Nm )
$\backslash 1.41 \mathrm{~kg}$ of a fiuid expands reversibly according to a linear law from 4.2 bar to 1.4 bar. The initial and final volumes are $0.004 \mathrm{~m}^{3}$ and $0.02 \mathrm{~m}^{3}$ respectively. The fluid is then cooled reversibly at constant pressure and finally compressed reversibly according to a law $p v=$ constant back to the initial conditions of 4.2 bar and $0.004 \mathrm{~m}^{3}$. Calculate the work done in each process stating whether it is done on or by the fuid and calculate the net work of the cycle. Sketch the cycle on a $p-v$ diagram.
(4480;-1120;-1845;1515 Nm)
$\checkmark 1.50 .09 \mathrm{~m}^{3}$ of a fluid at 0.7 bar are compressed reversibly to a pressure of 3.5 bar according to a law $p v^{n}=$ constant. The fluid is then heated reversibly at a constant volume until the pressure is 4 bar; the specific volume is then $0.5 \mathrm{~m}^{3} / \mathrm{kg}$. A reversible expansion according to a law $p v^{2}=$ constant restores the fuid to its initial state. Caiculate the mass of fuid present, the value of $n$ in the first process, and the net work done on or by the fluid in the cycle. Sketch the cycle on a p-v diagram.
( $0.0753 \mathrm{~kg} ; 1.85 ; 676 \mathrm{Nm}$ m

